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Generalized g-Sampling Imaging

Fang-Cheng Yeh, Van Jay Wedeen, and Wen-Yih Isaac Tseng*

Abstract—Based on the Fourier transform relation between dif-
fusion magnetic resonance (MR) signals and the underlying diffu-
sion displacement, a new relation is derived to estimate the spin
distribution function (SDF) directly from diffusion MR signals.
This relation leads to an imaging method called generalized g-sam-
pling imaging (GQI), which can obtain the SDF from the shell
sampling scheme used in g-ball imaging (QBI) or the grid sam-
pling scheme used in diffusion spectrum imaging (DSI). The accu-
racy of GQI was evaluated by a simulation study and an in vivo
experiment in comparison with QBI and DSI. The simulation re-
sults showed that the accuracy of GQI was comparable to that of
QBI and DSI. The simulation study of GQI also showed that an
anisotropy index, named quantitative anisotropy, was correlated
with the volume fraction of the resolved fiber component. The in
vivo images of GQI demonstrated that SDF patterns were similar
to the ODFs reconstructed by QBI or DSI. The tractography gen-
erated from GQI was also similar to those generated from QBI
and DSI. In conclusion, the proposed GQI method can be applied
to grid or shell sampling schemes and can provide directional and
quantitative information about the crossing fibers.

Index Terms—Diffusion magnetic resonance imaging (MRI), dif-
fusion g-space imaging, generalized g-sampling imaging, quantita-
tive anisotropy.

1. INTRODUCTION

IFFUSION magnetic resonance imaging (MRI) has been
D shown to characterize diffusion displacement of water
molecules and reveal the underlying microstructure [1], [2].
The diffusion pattern can be modeled by the diffusion tensor
[3], [4], which is able to demonstrate the gross fiber orientation
and provide quantitative indices such as fractional anisotropy
(FA) and diffusivity [5], [6]. As diffusion tensor imaging (DTT)
has been widely applied in clinical research, studies have
also shown that the tensor model cannot resolve the regions
with complex fiber orientations, such as crossing or branching
patterns [7], [8]. To better characterize the complicated fiber
patterns and discern fiber orientations, several methods have
been proposed, and these methods can be categorized into
model-based methods and model-free methods.
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Similar to the DTI approach, model-based methods rely
on a more complex model to characterize the diffusion MR
signals acquired by high angular resolution diffusion imaging
(HARDI), a scheme that samples data on a shell in the diffu-
sion-encoding space, dubbed g-space [9]. These model-based
methods include the multiple Gaussian model [9]-[11],
generalized diffusion tensor [12], [13], spherical harmonic
decomposition [14], continuous axially symmetric tensors [15],
composite hindered and restricted model [16], [17], diffusion
kurtosis model [18]-[20], and spherical harmonic deconvolu-
tion [21]-[24]. These methods can delineate crossing patterns
and estimate the directions of crossing fibers. The resolved
fiber directions can be used in fiber tracking and may facilitate
the mapping of brain connectivity [25].

Model-free methods, also called g-space imaging methods,
are based on the Fourier transform relation between the dif-
fusion MR signals and the underlying diffusion displacement
[26]. These methods tackle the problem by acquiring the ori-
entation distribution function (ODF) of the diffusion displace-
ment. From the ODF, the underlying crossing patterns of the
fibers can be inferred and the microstructure property evalu-
ated in terms of generalized fractional anisotropy (GFA) [27],
[28] or diffusion anisotropy [29]. Several g-space reconstruction
methods have been proposed to reconstruct ODF from diffusion
MR signals. Tuch introduced g-ball imaging (QBI) [27], which
uses Funk—Radon transform to reconstruct ODF from a HARDI
shell dataset. The Funk—Radon transform relation constitutes
the basis of the QBI reconstruction method and led to further
studies that reconstructed QBI through spherical harmonic de-
composition to achieve better accuracy and efficiency [30], [31].
Another g-space imaging method, diffusion spectrum imaging
(DSI) [32], [33], was also proposed as a way to reconstruct ODF
from MR signals. The diffusion data of DSI were acquired by
grid sampling scheme, and the Fourier transform was applied to
the g-space data to estimate the underlying diffusion displace-
ment pattern for further calculation of the ODF.

Although all g-space imaging methods are able to measure
diffusion ODF, some limitations still exist. The Funk—Radon
transform relation proposed in the QBI method only partially
exploits the relation between the MR signals and diffusion dis-
placements. This limitation is obvious because the acquired dif-
fusion MR signal is in fact contributed by the diffusion displace-
ments in all directions, not just the displacements perpendic-
ular to the diffusion gradient vector. As a result, the g-ball ODF
may not be an accurate ODF that considers all diffusion dis-
placements, as pointed out by Barnett et al. [34]. On the other
hand, DSI is able to characterize the diffusion probability den-
sity function (PDF) by applying the Fourier transform to the MR
signals in the g-space; however, it still relies on numerical es-
timation to get the ODF. The estimation often encounters the
truncation artifacts in the Fourier transform, and a Hanning filter
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is often needed to smooth the PDF [35], [36]. These numerical
errors can be minimized if the ODF can be estimated directly
from the measured MR signals.

In view of these limitations, we investigated the Fourier trans-
form relation between the diffusion MR signals and the diffu-
sion displacement of the spins, thereby deriving a new relation
between spin distribution function (SDF) and the MR signals.
Unlike the diffusion ODF, which is a probability distribution
of the diffusion displacement, the SDF represents a quantitative
distribution of the spins undergoing diffusion and can be com-
pared across different voxels. This finding led to a generalized
g-sampling imaging method (GQI), which could be applied to
a wide range of g-space datasets, such as those acquired by the
shell or grid sampling schemes. In this study, we conducted a
simulation study and an in vivo study to examine the accuracy
of GQI in comparison with QBI and DSI. A new quantitative
index was also investigated in the simulation study, revealing
its relation with fiber volume fraction.

II. MATERIALS AND METHODS

A. Theory

Combined k-space and g-space imaging is based on the
Fourier transform relation between the diffusion MR sig-
nals S(k,q), spin density p(r), and the average propagator
pA(r,R) in the diffusion time A [26]

S(k,q)
:/p(r) exp(i27k - r)/pA(r, R)exp(i2rq - R)dRdr (1)

where r is the voxel coordinate, R is the diffusion displacement,
q = 7Gé /27, with y being the gyromagnetic ratio of protons,
and G and 4 being the strength and duration of the diffusion-en-
coding gradient, respectively. The k-space reconstruction gives
us diffusion weighted image data W (r, q), which reveals the un-
derlying average propagator pa (r, R) of each observed voxel

Wir.a) = / p(r)pa(r, R) exp(izng - R)AR.  (2)

To represent the average propagator in the scale of spin quan-
tity, we introduce a spin density function Q(r,R), which is
estimated by scaling the average propagator pa (r,R) with
the density function p(r); i.e., Q(r,R) = p(r)pa(r,R). Be-
cause Q(r,R) isreal, W(r, q) is symmetric in the g-space, i.e.,
W(r,q) = W(r,—q). The spin density function Q(r,R) can
be calculated by applying the cosine transform on W (r, q)

Q(r,R) = /W(mq) cos(2mrq - R)dq. 3)

We further estimate the quantity of spins that undergo the dif-
fusion in a particular direction 1, resulting in the SDF )¢ (r, 1)
La
o(ri)= [ Qr,La)dL @
Jo

where L is the diffusion sampling length. Equation (4) shows
that SDF is an orientation distribution function of the spin
quantity because it is obtained from the spin density function
Q(r,R). SDF is also equal to diffusion ODF multiplied by
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the spin density. By including the spin density, the values of
SDF have a unified reference, thus offering the possibility of
comparing the distribution values across different voxels. In our
in vivo experiment, the diffusion weighted images had a heavy
Ty-weighted effect because the echo time was around 100 ms.
To eliminate the T, effect and obtain more accurate estimation
of SDF, each diffusion weighted image could be divided by the
b0 image and then multiplied by a proton density map.

Combining (3), (4), and integrating the distance parameter
L from O to L, we obtain the relation between the acquired
diffusion weighted images W(r, q) and SDF

Ln o
Po(r,a) = / / W (r,q)cos(2rLq - 0)dqdL
JO .
:LA/W(r,q)sinc(%rLAq -u)dq 5)

where sinc(z) = sin(x)/z for all x except 0, and sinc(0) = 1.
Equation (5) shows that the overall SDF is composed of a se-
ries of basis SDFs in the form of sinc functions weighted by
W (r, q). The shape of the basis SDF is determined by the value
of |q|L . A higher value of |q|LA presents a sharper contour,
and vice versa. Equation (5) allows us to calculate the summa-
tion of all the basis SDFs offered by a sampling scheme, yielding
the measured SDF ), (r, &)

Ym(r,0) = AgLa Z W(r,q)sinc(2rLaq-1)  (6)
q

where A, is a constant area term for the quadrature. Equation (6)
is the theoretical basis of the GQI reconstruction method, which
is applicable to any diffusion sampling scheme. Furthermore,
the SDF can be scaled by a constant value Z such that the SDF
of pure water diffusion is 1. To estimate the Zj, in practice, the
SDF of cerebrospinal fluid (CSF) could be used as a reference
because CSF resembles free diffusion of pure water.

Note that this SDF scaling is different from the ODF normal-
ization used in QBI and DSI. The ODF normalization is per-
formed independently for each voxel to fulfill the requirement of
a probability density function. The SDF scaling, instead, is ap-
plied to all voxels simultaneously, and thus the scaled SDFs can
still be compared across different voxels. Nonetheless, if diffu-
sion ODF is preferred, normalizing the SDF will turn it into the
diffusion ODF.

B. The Relation With Other q-Space Methods

Comparing the reconstruction equations of GQI and QBI, we
found that if the diffusion sampling length LA in (5) is set to
infinity, the sinc function in the equation approximates a delta
function, resulting in the same Funk—Radon transform used by
QBI. Such a feature leads us to suggest that QBI could be viewed
as a special case of GQI that has an infinite diffusion sampling
length, and GQI is a general approach that allows a finite diffu-
sion sampling length.

On the other hand, GQI and DSI also share the same the-
oretical basis: the Fourier transform relation between the dif-
fusion MR signals and the underlying diffusion displacement.
This may suggest that the GQI and DSI reconstruction could
result in similar diffusion patterns. However, they still differ in
their numerical approaches. In DSI, Fourier transform is applied
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to the g-space data, and then the diffusion ODF is calculated
by the numerical integration on the transformed grid data. GQI,
instead, is based the result of the mathematical reduction that
combines the Fourier transform and ODF calculation, thereby
deriving a direct relation between the diffusion signal and SDF.
Such an approach avoids the procedures of Fourier transform
and the subsequent interpolation on the grid data points.

Another difference between DSI and GQI is their ODF regu-
larization approaches. DSI reconstruction often relies on a Han-
ning filter to reduce the truncation artifact in Fourier transform,
an artifact that gives rise to a spiky appearance in the ODF. GQI,
instead, offers an explicit control parameter L A to minimize the
artifact. Though it is not clear which approach leads to better
angular resolution, the explicit parameter L A provided by GQI
ensures that the reconstruction can be reproduced exactly for
further comparison with other methods.

Yet another major difference between DSI and GQI is that the
definition of ODF in DSI includes a distance weighting L2

v = [ patLailde. %
Jo

This weighting term is a Jacobian determinant that results from

transforming the average propagator pa to the diffusion ODF.

We can further apply mathematical reduction to simplify the

numerical integration in (7) and obtain a different basis function
for GQI

G (r,0) = A,LR Y " W(r,q)f(2rLaq- )
qa
2 cos(x)

f(z) = { 1 ® v#0

3 r=0

(22 —2) sin(x)
LA (8)

where f(z) is the basis SDF resulted from the L? weighting.
Nonetheless, there is no guarantee of which weighting approach
is a better estimation for fiber orientations. The accuracy for
different L weighting strategies requires further investigation.
In this study, the GQI reconstruction only used the sinc function
as the basis function for reconstruction.

C. Diffusion Sampling Length

The value of the diffusion sampling length LA in (4) offers
a way to adjust the range of diffusion displacement to be in-
tegrated. A lower L covers spins with less diffusion displace-
ment, resulting in coarser SDFs. A higher L A, on the other hand,
covers a larger range and results in sharper SDFs. With such fea-
tures, L a can serve as a regularization parameter to adjust the
coarseness of the SDF.

The choice of L can be made by estimating the diffusion
length. If the underlying diffusion follows Gaussian distribu-
tion, the diffusion length is (6D7)!/2, where D is the diffusion
coefficient and 7 the effective diffusion time 7 = (A — §/3).
The diffusion length can be used as the unit of L, i.e., Lan =
o(6D7)'/2, where o is an adjustable factor. If we choose o =
1.25, then 80% of the diffusion distribution will be encompassed
in the SDF. Under the restricted diffusion condition, the per-
centage of coverage will even be higher. From experience, we
found that setting o between 1 and 1.3 yields good reconstruc-
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tion results. A ¢ higher than 1.3 may increase the sensitivity to
noise and makes the reconstruction unfavorable.

The introduction of the ¢ has another benefit. We can replace
the L in (6) by o(6D7)/2, resulting in the following recon-
struction equation:

Ym(r,0) = A,La Z W (r, q)sinc (U\/M' qa .ﬁ)

. ldl

&)
where b(q) is the b-value of the corresponding diffusion en-
coding q, for b(q) = (27|q|)?7, and q/|q] is the diffusion gra-
dient direction in unit vector. This reconstruction equation uses
b-values and o as the input instead of the ¢ values. Since the
b-value is commonly used in most diffusion pulse sequences, it
is more convenient to use (9) to perform GQI reconstruction.

D. Applicable Sampling Schemes

Although GQI can be applied to any sampling schemes to re-
construct SDF, the reconstruction result may not be correct if a
sampling scheme is not balanced. One way to check this condi-
tion is to test whether the sampling scheme fulfills the balanced
requirement: the MR signals obtained from an isotropic diffu-
sion should be reconstructed to an isotropic SDF. Under this
paradigm, we propose a quick numerical test to check whether
a sampling scheme is acceptable for GQI reconstruction. As-
suming that the numerical MR signals are generated from an
isotropic diffusion tensor Dy, we expect the MR signal to be re-
constructed to an isotropic SDF, which can be calculated by the
following formula, where 7 is the effective diffusion time

Po(0) = A, La Z sinc(2rLaq - ) exp(—472q? Diqr).
q

(10)
To fulfill the balanced requirement, the reconstructed SDF
1o(1) should be nearly isotropic, which can be examined by
calculating the variance of the SDF. The balanced requirement
provides a framework to design an acceptable sampling scheme,
thereby facilitating the development of a GQI sampling scheme
that is optimized for clinical use. Also, this requirement can
be used as a necessary condition for obtaining correct recon-
struction; however, further study is still needed to determine
whether this requirement is sufficient.

E. Quantitative Anisotropy of the Spin Distribution

In this paper, we defined an index called quantitative
anisotropy (QA) to quantify the spin population in a specific
direction. Unlike FA or GFA, which is a metric for each voxel,
QA is a metric for each resolved fiber population. This allows
QA to be compared to fiber specific information such as the
volume fraction of each individual fiber. The QA in a resolved
fiber orientation is defined by the SDF value at the resolved
fiber orientation a minus the background isotropic diffusion
component I(1q)

QA(a) = Zo (Yo(a) — I(¥q))

where Z is the SDF scaling constant. To estimate the isotropic
component, in this study, we used the minimum value of 1 as
an approximation.

(11



YEH et al.: GENERALIZED ¢-SAMPLING IMAGING

F. Simulation Study

We performed a simulation study to validate the accuracy of
GQI by comparing it with QBI and DSI. The simulation model
was based on a mixed Gaussian model consisting of a compo-
nent of isotropic diffusion and two fiber populations [9], [14]

S(b,v) = S(0)(f1 exp[-bvTD;v]

+ f2 exp[—bvTDov] + foexp[-bvTDov]) (12)
where b and v are the b-value and the unit vector of the ap-
plied diffusion gradient, respectively, fi and fo the volume frac-
tions of the two fiber populations, and fy is the volume frac-
tion of the isotropic diffusion. Dy, D1, and D, are the diffu-
sion tensor matrices for these three diffusion components. We
simulated this model with a variety of parameter combinations
so that we would not have bias on any parameter. Also, to de-
couple the relation between f; and fo, we also added various
volume fractions of background isotropic diffusion in the sim-
ulation model, the fjy. The simulation model was then used to
generate diffusion weighted images with noise added. The im-
ages followed the same reconstruction flow as the practical con-
dition. In the simulation study, the fo was 0.1, 0.2, 0.3, 0.4,
and 0.5. The volume fractions of the major fibers were assigned
from 0.5 x (1 — fp) to 1.0 x(1 — fo), which was further divided
into 64 divisions. The remaining volume was occupied by the
minor fiber population. The crossing angles between major and
minor fibers ranged from 30° to 90°, divided into 64 divisions.
The mean diffusivity was 1.0 x 10~2 mm? /s, and the FA values
for both of the simulated fibers were 0.3, 0.4, 0.5, and 0.6. A
total of 81 920 parameter combinations were simulated with Ri-
cian noise [37] added under bO-SNR = 30. Each parameter
combination further underwent five simulation trials, resulting
in 409 600 simulation scenarios. For QBI, each simulation sce-
nario generated 252 MR signals according to a 252-direction
b-table with b-value = 3000 s/mm?. The sampling directions
of the b-table were obtained from a five-fold tessellated icosa-
hedron. For DSI, a 203-point grid sampling scheme with a max-
imum b-value of 4000 s/mm? was used to generate the MR sig-
nals. The grid sampling points were obtained by iterating the
integrals ¢, qy, and ¢ satisfying ¢2 + ¢7 4+ ¢2 < 13, which is
according to the optimum sampling scheme recommended by
Kuo et al. [36].

The simulated QBI signals were reconstructed by the spher-
ical harmonic approach [31] with a regularization term based
on the Laplace—Beltrami operator. As recommended by De-
scoteaux et al. [31], the spherical harmonic order was set to
8 and the regularization parameter was set to 0.006. The ob-
tained ODF had 362 directions generated from a six-fold tessel-
lated icosahedron, offering an angular resolution of around 9°.
The simulated DSI signals were placed in a 16 x 16 x 16 ma-
trix (q value = —8 to 7) with zero padding. To eliminate trun-
cation artifacts, smoothing was performed by applying a Han-
ning filter of cosine (27 ¢/16), where g was the g-space distance
from the origin, as proposed in an optimization study [36]. The
diffusion PDF was obtained by discrete Fourier Transform and
transformed into a 362-direction ODF by integration in each
sampling direction. Both QBI and DSI datasets were also re-
constructed by GQI method with diffusion sampling lengths L A
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of 35, 45, 55, and 65 pum, under the assumption that the diffu-
sion time was 80 ms (diffusion length= 32 pm). The g-values
were estimated from the b-values by assuming that the diffusion
gradient duration § was 35 ms and that the MR signals were
obtained using a standard pulsed-gradient spin-echo pulse se-
quence, where b = (yG6)?(A — §/3) and ¢ = vG§/27. Using
the reconstruction methods mentioned above, the fiber orienta-
tions were determined by the local maxima of the reconstructed
ODFs or SDFs.

The performance of a reconstruction method was evaluated
by its ability in resolving major and minor fibers. The major
fiber was defined by the largest local maximum (the global max-
imum) on a SDF or ODF. The minor fiber was defined by the
second largest local maximum. In this study, we limited the fiber
population in the two-fiber condition to simplify comparison.

To evaluate the ability to resolve major fibers, we calculated
the average of the angular deviation, which was the inner angle
between the resolved fiber orientation and the actual orientation.
A lower value in the average angular deviation suggested better
performance.

Evaluating the ability to resolve minor fibers is more com-
plicated. A reconstruction may fail to resolve the minor fiber,
and the angular deviation cannot be calculated. Also, inade-
quate smoothing could result in false minor fibers that present
a spurious increase in performance. To avoid giving credit to
false fibers and to handle the situation of missing fibers, we
defined a condition called “successful resolving,” which only
gives credit to the cases in which minor fibers were accurately
resolved. When the resolved orientation was in the same discrete
orientation as the actual one, the condition was counted as ““suc-
cess;” on the contrary, when the minor fiber could not be iden-
tified or the resolved orientation was not the same as the actual
one, the condition was counted as “failure.” The performance
of a method was then evaluated by the percentage of successful
trials. Higher percentages indicated better performance.

One should note that the fiber orientations are discretized to
362 sampling orientations, so the same orientation occurring in
the “success” condition implies that the angular deviation of the
resolved minor fiber is less than a half of the ODF resolution, ap-
proximately 4°-5°. Therefore, it is expected that the percentage
of successes may not be high.

G. In Vivo Experiments

A 27-year-old volunteer without any known neurological
disease was scanned on a 3T scanner (TIM Trio, Siemens,
Erlangen, Germany). The subject signed an informed consent
form approved by the institutional review board. The scan was
done with a single-shot twice-refocused echo planar imaging
(EPI) diffusion pulse sequence and a 12-channel head coil.
The field of view was 240 x 240 mm, matrix size 96 x 96,
slice thickness 2.5 mm (no gap), number of slices 40, and
voxel size 2.5 x 2.5 x 2.5 mm. Under the prescribed spatial
parameters, a 252-direction shell sampling scheme and a
203-point grid sampling scheme were scanned subsequently.
For the 252-direction shell scheme, the b-value = 4000 s/ mm?2,
TR/TE = 7200/133 ms, average number = 1, resulting in a
scanning time of 30 min. For the 203-point grid scheme, the
maximum b-value = 5000 s/mm?, TR/TE = 7200/144 ms,
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resulting in a scanning time of 25 min. The dataset acquired
by the 252-direction shell sampling scheme was reconstructed
separately by spherical harmonic based QBI and GQI, and the
dataset obtained from the 203-point grid sampling scheme was
reconstructed separately by DSI and GQI. The reconstruction
methods were applied to each dataset using the same parameter
settings as the simulation study, and 40 ym (o0 = 1.25) was
adopted as the diffusion sampling length for GQI reconstruc-
tion.

The in vivo images were also used to demonstrate the applica-
tion of the balanced requirement in obtaining feasible diffusion
sample schemes. First, we generated several possible schemes
by subsampling the current 252-direction shell and 203-point
grid dataset into fewer sampling points. The possible schemes
were further checked by the balanced requirement, and the ac-
ceptable schemes were selected to receive further GQI recon-
struction. Moreover, for schemes having less sampling direc-
tion, lower values of diffusion sampling length were used to
fulfill the balanced requirement. The reconstructed results were
then compared with the reconstruction of the original data to
observe whether the SDFs were consistent.

For the 252-direction shell dataset, a total of 50 000 possible
schemes were randomly generated to obtain three acceptable
schemes, including 126-direction, 64-direction, and 32-direc-
tion sampling. The diffusion sampling lengths for each scheme
were 25.6 pym (0 = 0.8), 19.2 um (¢ = 0.6), and 12.8 um
(o = 0.4), respectively.

For the 203-point grid dataset, the dataset was first subsam-
pled into a half sphere, which had 102 points in g-space. Pos-
sible schemes were generated by discarding different amounts
of the high b-value data. Three acceptable subsampled schemes
were obtained for further reconstruction, including 102-point
(b-max = 5000 s/mm?), 41-point (- max = 2307 s/mm?),
and 17-point (b-max = 1538 s/mm?) sampling. The diffu-
sion sampling lengths for each scheme were 32 ym (o = 1.0),
25.6 ym (o = 0.8), and 19.2 um (o = 0.6), respectively.

H. Tractography Study

The tractography of QBI, DSI, and GQI was obtained by
a modified streamline tracking algorithm implemented on the
in-house program, DSI Studio (http://dsi-studio.labsolver.org).
This algorithm used Eulerian integration similar to another
streamline approach [38] but was modified to make use of
multiple fiber orientations at each voxel. The seeding points,
which were the starting points for tracking, were uniformly
distributed within a user-defined region. In this study, we
placed an ovoid seeding region in the centrum semiovale. The
propagation direction was calculated by applying trilinear in-
terpolation on the fiber orientations provided from eight nearby
voxels of the current point. For each nearby voxel, only the
fiber orientation that had the smallest turning angle was consid-
ered for interpolation. The next point was then determined by
moving in the propagation direction for 1 mm. The propagation
process repeated until the tracking trajectory fulfilled either a
turning angle of greater than 60° or the anisotropy value of the
current position below a predefined threshold. To get a suitable
anisotropy threshold for each method, the GFA or QA of the
cortical area were inspected separately, and the isocontour of
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the threshold was adjusted to cover the same extent of the white
matter area. A threshold of GFA = 0.1 was used for QBI and
DSI, and a threshold of QA = 0.07 was used for GQI. To facil-
itate comparison, we further separated the generated tracts by
the orientations with which they enter the seeding region. The
tracts passing in the anterior—posterior and vertical directions
were separated by the interactive interface on DSI Studio.

III. RESULTS

A. Simulation Study

The results of QBI and GQI applied to the same simu-
lated dataset are summarized in Table I and presented in
Fig. 1(a) and (b). The results showed that the average major
fiber deviation was 3.94° & 3.46° (mean = standard deviation)
for QBI, whereas for GQI, the deviation had a lowest value
of 3.22° + 3.50° when the diffusion sampling length LA was
35 pm. The angular deviation of major fibers in GQI gradually
increased as Lo became longer. The percentage of success in
resolving minor fibers was 11.08% for QBI. For GQI, that per-
centage had the highest value of 13.61% when L = 45 pym.

The results of DSI and GQI applied to the same simu-
lated dataset are summarized in Table II and presented in
Fig. 1(c) and (d). The results showed that the average major
fiber deviation was 3.15° & 3.29° for DSI. For GQI, the devi-
ation had the lowest value, 1.05° £ 2.55°, when the diffusion
sampling length Ln was 65 pm. Unlike the results shown
in Table I, the angular deviation of the major fiber in GQI
gradually decreased as L became longer. The percentage
of success in resolving minor fibers was 8.59% for DSI. For
GQI, the percentage gradually increased as L increased and
achieved the highest success rate of 9.54% when L = 65 pum.

To analyze the relation between QA and volume fraction,
we selected the 203-point grid simulation scenarios that had
FA = 0.4,0.5, and 0.6, while the volume fractions of the
major fiber, minor fiber, and isotropic components varied inde-
pendently as described in the Method section. In the selected
scenarios, we excluded the scenarios that failed to resolve fibers
within 9°, resulting in a total of 31 056 simulation scenarios.
We calculated the QA of each resolved fiber population and ob-
served the correlations between QA and the assigned variables
of the fiber. The correlation coefficient between QA and the
fiber volume fraction was 0.8602 (p < 0.01); it was —0.3275
(p < 0.01) between QA and the volume fraction of the isotropic
background; and it was 0.3812 (p < 0.01) between QA and FA
of the fiber.

B. In Vivo Experiments

Fig. 2 presents a three-way fiber crossing region in the left
hemisphere. Note that the ODFs provided by QBI [Fig. 2(a)]
are similar to the SDFs offered by GQI [Fig. 2(b)], which was
applied to the same dataset acquired by the shell sampling
scheme. Also, the ODFs provided by DSI [Fig. 2(c)] are similar
to the SDFs offered by GQI [Fig. 2(d)], applied to the same
dataset acquired by the grid sampling scheme. Fig. 3 presents
the reconstructed result of a two-way fiber crossing region in
the right hemisphere. Likewise, the results of QBI [Fig. 3(a)]
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Simulation results of different settings in resolving major and minor fibers. Results of QBI and GQI reconstruction methods applied to the same simulated

252-direction shell dataset: (a) the angular deviation of major fibers, and (b) the percentage of success in identifying minor fibers. Results of DSI and GQI recon-
struction methods applied to the same simulated 203-point grid dataset: (c) the angular deviation of major fibers, and (d) the percentage of success in identifying
minor fibers. The error bars in (a) and (c) represent the standard deviations of the major fiber deviation.

TABLE 1
SUMMARY OF THE SIMULATION RESULTS

] GQI GQI GQI GQI
Reconstruction method QBI (L=35um) (L=45um) (L=55um) (L=65um)
Average deviation of 394°+3.46° 322743507 39943427 422°43.44°  428°+345
major fibers

Successful resolving of 11.08% 12.40% 13.61% 9.63% 9.47%

minor fibers

The reconstruction methods were applied to the same dataset simulated by the 252-direction shell sampling

scheme.

TABLE II
SUMMARY OF THE SIMULATION RESULTS

. GQI GQI GQI GQI
Reconstruction method DSI (L=35um) (Ly=45um) (Ly=55um) (Ly=65um)
Average deviation of ° ° ° ° o ° ° 0 0 o
major fibers 3.15+43.29 1.79 £3.00 1.84 £3.03 1.58 £3.02 1.05 £2.55
Successful resolving of g g0, 633% 7.90% 8.22% 9.54%

minor fibers

The reconstruction methods were applied to the same dataset simulated by the 203-point grid sampling scheme.

and the results of GQI [Fig. 3(b)] are similar, as are those of
DSI [Fig. 3(c)] and GQI [Fig. 3(d)].

The QA maps of the in vivo images are presented in Fig. 4.
Fig. 4(a) and (b) show the QA maps of the major fibers, and
Fig. 4(c) and (d) show the QA maps of the minor fibers. These
QA maps were generated by applying the GQI reconstruction
method on the in vivo 203-point grid dataset. The QA maps of
the major fibers revealed regions with predominant fiber tracts,
such as the corpus callosum, internal capsule, and cerebral pe-
duncle, all of which showed higher QA values than other white
matter regions [Fig. 4(a) and (b)]. On the other hand, the QA
maps of the minor fibers revealed regions having crossing fibers,

such as the pons containing pontocerebellar tracts and corti-
cospinal tracts, and the centrum semiovale containing the corpus
callosum, superior longitudinal fasciculus, and corona radiata
[Fig. 4(c) and (d)].

In the balanced requirement experiment, the reconstructed
SDFs of the subsampled shell dataset are presented in Fig. 5,
and the reconstructed SDFs of the subsampled grid dataset are
presented in Fig. 6. Both figures were focused on the same
three-way crossing region in the centrum semiovale of the
right hemisphere, and the SDFs of the original datasets without
subsampling are also presented for comparison. As presented
in Fig. 5, the 126-direction and 64-direction shell datasets had
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Fig. 2. Coronal view showing centrum semiovale where the callosal fibers,
corticospinal tract and superior longitudinal fasciculus form a three-way
crossing pattern. The slice position is indicated on the 3-D volume rendering of
white matter. The ODF or SDF maps are generated by different combinations of
methods and datasets. Panel (a) is the 252-direction shell dataset reconstructed
by QBI, and panel (b) is the same dataset reconstructed by GQI. Panel (c) is the
203-point grid dataset reconstructed by DSI, and panel (d) is the same dataset
reconstructed by GQI. The directions of the ODF or SDF are pseudo-colored:
red in the left-right direction, green in the anterior-posterior direction, and blue
in the axial direction. The gray-leveled background is the mapping of GFA. In
each panel, a representative ODF or SDF in the same position is focused to
facilitate visualization (inset).
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Fig. 3. Axial view of the centrum semiovale where callosal fibers and the supe-
rior longitudinal fasciculus form a two-way crossing pattern. The ODF or SDF
maps are generated as follows: panel (a) is the shell dataset reconstructed by
QBI, panel (b) is the same dataset reconstructed by GQI, panel (c) is the grid
dataset reconstructed by DSI, and panel (d) is the same dataset reconstructed by
GQI. The images are displayed in the same way as those in Fig. 2.

contours similar to the original ones, although the contours
were duller. In the 32-direction dataset, although the crossing
pattern was not observed in the resulted SDFs, they still
maintained consistent overall orientations. Furthermore, even
though the images in the 32-direction dataset were acquired by
a b-value of 4000 s/mm?, they could only be reconstructed with
a lower value of diffusion sampling length in order to fulfill
the balanced requirement. As a result, the reconstructed SDFs
were much duller, in the same way as the SDFs reconstructed
from lower b-value images. In Fig. 6, likewise, the 102-point,
41-point, and 17-point grid datasets showed consistent overall
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Fig. 4. Mappings of the quantitative anisotropy (QA) values of the resolved
major fibers (a), (b) and the minor fibers (c), (d). The position of coronal slice
and axial slice are similar to those shown in Figs. 2 and 3, respectively. Note that
QA maps of the major fibers highlight the regions with predominant fiber tracts
such as the corpus callosum (cc), internal capsule (ic), and cerebral peduncle
(cp). QA maps of the minor fibers highlight regions with crossing fibers such as
the pons (p) and centrum semiovale (cs). In the QA maps of the minor fibers,
the QA value is assigned 0O if a voxel has no minor fibers.

orientations with the original ones, but appeared duller as the
sampling points decreased.

C. Tractography

In this section, we present the tractography of QBI, DSI, and
GQI as a qualitative comparison. The association fiber tracts
that pass through the centrum semiovale are shown in Fig. 7,
where directional color is used to present the local orientation of
the fiber tracts. The tractography generated by QBI is presented
in Fig. 7(a), and GQI applied to the same data is presented in
Fig. 7(b). Similarly, the tractography generated by DSI is pre-
sented in Fig. 7(c), and GQI applied to the same data is presented
in Fig. 7(d). The location of the centrum semiovale is presented
by a yellow-colored region. On the left side of Fig. 7, the surface
rendering of the white matter and the fiber tracts are presented
together to demonstrate their relative locations. In Fig. 7(a)—(d),
all the rendered tracts show a generally similar pathway; the
arcuate fasciculus presents an arc-like fiber bundle connecting
the Broca’s and Wernicke’s areas, and the termination points
at the Wernicke’s area present a consistent pattern. However,
minor differences can still be observed among these four ren-
dered tracts, such as fibers connecting to the angular gyrus (the
green fibers that extend to the right side) or the fibers going to
the Broca’s area.

Fig. 8 shows the tractography of projection fiber tracts
that pass through the centrum semiovale. The tractography
generated by QBI is presented in Fig. 8(a), and GQI applied
to the same data is presented in Fig. 8(b). The tractography
generated by DSI is presented in Fig. 8(c), and GQI applied



YEH et al.: GENERALIZED ¢-SAMPLING IMAGING

252-direction

L1
an

Ss oo ab ae g Y

ale av @B 9 A o5
st st o2 g2 ¢

=SSt o 2 §3 95 ¥

4
=
]
L4
i
§
]
(]
[
L

«® &8 == g2 /

126-direction

T

PO

1633

64-direction 32-direction

‘l

cacacag? O ¢
SO OGO
GCPOPLLHLO»LOD
s seis2 g2 O H',
sttt g d
PO

Fig. 5. Reconstruction result of GQI on subsampled shell schemes (126-direction, 64-direction, and 32-direction). The result of the original 252-direction datasets
without subsampling is also presented for comparison. The SDFs of the centrum semiovale where callosal fibers and the superior longitudinal fasciculus form a
two-way crossing pattern are presented in the upper row. The resolved fiber orientations of the SDFs are presented in the lower row.
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Fig. 6. Reconstruction result of GQI on subsampled grid sampling scheme (102-point, 41-point, and 17-point). The result of the original 203-point datasets without
subsampling is also presented for comparison. The SDFs of the centrum semiovale in the same region as Fig. 5 are presented in the upper row. The resolved fiber

orientations of the SDFs are presented in the lower row.

to the same data is presented in Fig. 8(d). The projection
fiber tracts rendered by these four settings appear similar in
general. Furthermore, higher similarity can be found between
Fig. 8(a) and (b), as well as between Fig. 8(c) and (d). The
above qualitative comparisons demonstrate that GQI applied to
different sampling schemes could produce tractography similar
to that reconstructed by the original reconstruction method.

IV. DiscuUssIioN

In this paper, we propose a g-space imaging method called
GQI, the accuracy of which was evaluated by simulation and

in vivo studies in comparison with QBI and DSI. The simula-
tion results showed that the accuracy of GQI in resolving major
and minor fibers was comparable with that of QBI in the shell
sampling scheme and that of DSI in the grid sampling scheme.
The QA values, even under different FA values and isotropic
volume fractions, were shown to have a close association with
the volume fractions of the resolved fiber populations. The in
vivo results showed that the SDF patterns reconstructed by GQI
were similar to the ODFs reconstructed by either QBI or DSI.
The QA maps of major and minor fibers also highlighted re-
gions with predominant fiber tracts and regions with crossing
fibers, respectively. The tractography study showed that GQI
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Fig.7. The tractography of (a) QBI on 252-direction sampling scheme, (b) GQI
on 252-direction sampling scheme, (c) DSI on 203-point sampling scheme, and
(d) GQI on 203-point sampling scheme. The 3-D volume rendering of white
matter is shown on the left with the seeding area presented by the yellow region.
Only the fibers passing the seeding region in the left centrum semiovlale (yellow
ovoid region) in anterior—posterior directions are presented. The locations of the
Broca’s area (B), Wernicke’s area (W), and angular gyrus (A) are labeled on the
left to illustrate their relative positions.

Fig. 8. The tractography of (a) QBI on 252-direction sampling scheme, (b)
GQI on 252-direction sampling scheme, (c) DSI on 203-point sampling scheme,
and (d) GQI on the 203-point sampling scheme. Only the fibers passing the
seeding region in the left centrum semiovale (yellow ovoid region) in the vertical
directions are presented.

with the modified streamline fiber tracking method was able to
offer results similar to those of QBI and DSI applied on the shell
and grid datasets, respectively. The minor differences in tractog-
raphy resulted from the differences in reconstruction methods
and sampling schemes.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 9, SEPTEMBER 2010

In this study, we cannot say that GQI has better angular res-
olution than QBI and DSI. The simulation study showed that
the accuracy of GQI was affected by the diffusion sampling
length L. A similar scenario could also occur with QBI and
DSI, considering that the reconstruction methods and parame-
ters used in this study may not be optimal. Although we adopted
one improved method for QBI reconstruction [31], [36], several
alternative methods are available [27], [30], [39], [40], and no
consensus has been achieved as to which method is the best.
As for DSI, even though the optimum acquisition scheme has
been recommended previously and was adopted in this study
[36], we note that the accuracy of DSI is still influenced by
the parameters of the Hanning filter used in the reconstruction
process. Since the methods applied in this study might not have
employed the best settings, we can only conclude that the GQI,
QBI, and DSI reconstructions employed in this study have com-
parable accuracy in resolving crossing fibers.

Other than the consistency with other g-space methods, GQI
seems to have potential advantages that may be worth noting.
First, the reconstruction process of GQI does not require de-
convolution procedures. The convolution feature of GQI is easy
to analyze and implement. Second, the proposed method offers
an opportunity to compare the SDF values amongst voxels. In
QBI and DSI reconstruction, each ODF is locally normalized,
and the same ODF value in different voxels does not neces-
sarily represent the same physical quantity, making the com-
parison of ODFs among voxels impossible. The SDF values,
instead, are calculated by scaling the average propagator with
the density function, thus unifying the scale of SDF across dif-
ferent voxels. This approach gives the SDF a consistent phys-
ical meaning over all the voxels and therefore allows inter-voxel
comparison. Finally, GQI is readily applicable to a variety of
sampling schemes. In the simulation and in vivo studies, we
have shown that GQI is generally applicable to datasets acquired
by either shell or grid sampling schemes. Although not demon-
strated in this study, GQI can also be applied to DTI datasets or
even the combination of datasets acquired by any of the sam-
pling schemes mentioned above [41].

Despite having several potential advantages, GQI also has
limitations. First of all, the measured SDF provided by GQI does
not necessarily guarantee correct results unless the sampling
scheme fulfills the balanced requirement. Second, the measured
density function p(r) in GQI is affected by T, T3, and B1 in-
homogeneity, resulting in errors between the measured density
function and the actual one. However, there are possible ways
to minimize these effects. The effect of T; can be minimized
by choosing a longer TR, which is already used in diffusion
MRI of the whole brain using current 2D EPI techniques. Elim-
inating the effect of T is harder because in the pulsed-gradient
spin-echo diffusion sequence, TE is approximately 100 ms for
the current clinical scanners. A possible solution is to acquire
an additional b0 image with a different TE. This additional b0
image can be used to estimate the effect of Ty and to eliminate
it. The effect of B1 inhomogeneity is noticeable on current 3T
scanners, resulting in non-uniform excitation within an imaging
slice. This effect could be mitigated by novel RF pulse designs
which are under active development. Third, the measured SDF
pattern is changed according to the sampling scheme used, as
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noted in Figs. 2 and 3. This implies that the performance of GQI
depends on the diffusion sampling scheme. Further study is re-
quired to develop an optimum sampling scheme within an ac-
ceptable scan time that offers the measured SDF closest to the
actual SDF.
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