Connectometry Analysis
Use
--action=cnt
to initiate [Step C3 Connectometry].
Examples
1. Use a multiple regression model with three variables (0:SEX, 1:BMI, 2:AGE) to study how BMI (the second variable) affects the brain connection in the CMU 60 connectometry database.
dsi_studio --action=cnt --source=CMU60.db.fib.gz --index_name=qa --effect_size=0.3 --demo=CMU60.txt --variable_list=0,1,2 --voi=1
2. Use ROI and ROA to limit connectometry analysis on subjects with specific demographics: scanner=1 and group not equal to 3.
dsi_studio --action=cnt --source=study.db.fib.gz --demo=demo.csv --effect_size=0.2 --roa=excluded_mni_region.nii.gz --select="scanner=1,group/3" --variable_list=2,4,5 --voi=5
Core Functions
Parameter | Description |
---|---|
source |
Specify the db.fib.gz file. |
index_name |
Specify which diffusion metrics to analyze (e.g. –index_name=dti_fa) |
demo |
Assign the path to the demographic CSV or text file. |
variable_list |
Assign the study variables for regression. Use commas to include multiple variables. Example: --variable_list=0,1,2 includes the first three variables. |
voi |
Specify the “variable of interest” for multiple regression. Use --voi=0 for the first variable, --voi=1 for the second, etc. For longitudinal analysis, use --voi=longitudinal . |
Parameters
| Parameter | Default | Description |
|——————–|———————-|———————————————————————————|
| t_threshold
or effect_size
| 2.5
for t threshold, or 0.3
for effect size Assign the T or the effect size threshold for correlational tracking. |
| length_threshold
| 20
voxel distance | Specify the minimum tracking length for correlations. |
| fdr_threshold
| 0
| Set a nonzero FDR threshold (e.g., 0.05) to enable FDR control. |
| permutation
| 2000
| Specify the number of permutations used in analysis. |
| thread_count
| Hardware max | Define the number of threads for computation. |
| exclude_cb
| 1
| Use --exclude_cb=1
to exclude the cerebellum from analysis. |
| no_tractogram
| 1
| Set to 1
to avoid generating 3D tractogram images (output files are still generated). |
| normalize_iso
| 1
| normalize qa or rdi values by iso to provide more robust results |
| tip_iteration
| 16
| Number of pruning iterations to reduce noise. |
| region_pruning
| 1
| remove fragmented findings using the tract coverage region |
—
Optional Functions
| Parameter | Description |
|———————|———————————————————————————|
| select
| Select subjects for analysis. Example: --select=Gender=1,Age>20
filters subjects with Gender=1 and Age > 20. |
| seed, roi, roa...
| Define regions to limit the tracking areas (see --action=trk
for details). |
| output
| Specify the prefix for all output files. Defaults to the demographics file name with the study variable appended. |
—
Updates Based on Code Features
Features Found in Source Code:
- Multiple Regression: The class
group_connectometry_analysis
handles the regression model and adjusts QA values based on statistical models. - FDR Analysis: The function
calculate_FDR
computes the false discovery rate to identify significant findings. - Exclusion of Cerebellum: The method
exclude_cerebellum
removes cerebellum-related data whenexclude_cb=1
. - SPM Generation: Statistical Parametric Mapping is computed via
calculate_spm
and results are saved usingsave_result
. - Report Generation: The
generate_report
method creates a detailed HTML visualization of findings.